跳转至

附录 B:为自定义目标生成 Haar 级联

该附录显示了如何生成 Haar 级联 XML 文件,例如第 4 章“使用 Haar 级联跟踪人脸”时所使用的 XML 文件。 通过生成自己的级联文件,我们可以潜在地跟踪任何模式或对象,而不仅仅是面部。 但是,好的结果可能不会很快出现。 我们必须仔细收集图像,配置脚本参数,执行实际测试并进行迭代。 可能涉及大量的人工时间和处理时间。

收集正面和负面的训练图像

你知道抽认卡的教学法吗? 这是一种向幼儿教授单词和识别技巧的方法。 老师给全班同学展示了一系列图片,并说了以下内容:

“这是牛。Mo!这是马。邻居!”

级联文件的生成方式类似于抽认卡教学法。 要了解如何识别母牛,计算机需要预先识别为母牛的正面训练图像和预先识别为非牛的负面训练图像。 作为训练器,我们的第一步是收集这两套图像。

在确定要使用多少个正面训练图像时,我们需要考虑用户查看目标的各种方式。 理想,最简单的情况是目标是始终在平坦表面上的 2D 图案。 在这种情况下,一个正面的训练图像可能就足够了。 但是,在其他情况下,可能需要数百甚至数千张训练图像。 假设目标是您所在国家的国旗。 当在文档上打印时,标志的外观可能可预测,但是当在顺风飘扬的织物上打印时,标志的外观变化很大。 诸如人脸之类的自然 3D 目标的外观范围可能更大。 理想情况下,我们的一组正面训练图像应代表我们的相机可能捕获的许多变化。 可选地,我们的任何正面训练图像都可以包含目标的多个实例。

对于我们的负面训练集,我们希望大量图像不包含目标的任何实例,但确实包含相机可能捕获的其他内容。 例如,如果一面旗帜是我们的目标,那么我们的负面训练集可能包括各种天气情况下的天空照片。 (天空不是旗帜,但经常在旗帜后面看到。)不过不要假设太多。 如果相机的环境无法预测,并且在许多设置中都出现了目标,请使用各种各样的负面训练图像。 考虑构建一套通用的环境图像,您可以在多个训练方案中重复使用这些图像。

查找用于训练的可执行文件

为了使级联训练尽可能自动化,OpenCV 提供了两个可执行文件。 它们的名称和位置取决于操作系统和 OpenCV 的特定设置,如以下两节所述。

在 Windows 上

Windows 上的两个可执行文件称为ONopencv_createsamples.exeONopencv_traincascade.exe。 它们不是预建的。 而是,仅当您从源代码编译 OpenCV 时,它们才存在。 根据您在第 1 章,“设置 OpenCV”中选择的编译方法,它们的父文件夹是以下文件夹之一:

  • MinGW:<unzip_destination>\bin
  • Visual Studio 或 Visual C++ Express:<unzip_destination>\bin\Release

如果要将可执行文件的文件夹添加到系统的Path变量中,请参考第 1 章“设置 OpenCV”的“在 Windows XP,Windows Vista,Windows 7 和 Windows 8 上选择信息框”部分中的说明。 否则,请注意可执行文件的完整路径,因为我们将需要在运行它们时使用它。

在 Mac,Ubuntu 和其他类似 Unix 的系统上

Mac 上的两个可执行文件 Ubuntu 和其他类似 Unix 的系统称为opencv_createsamplesopencv_traincascade。 它们的父文件夹是以下文件夹之一,具体取决于您的系统和在第 1 章,“设置 OpenCV”中选择的方法:

  • 带有 MacPorts 的 Mac:/opt/local/bin
  • 带有 Homebrew 的 Mac:/opt/local/bin/opt/local/sbin
  • 具有 Apt 的 Ubuntu:/usr/bin
  • 使用我的自定义安装脚本的 Ubuntu:/usr/local/bin
  • 其他类 Unix 系统:/usr/bin/usr/local/bin

除 Mac 带有 Homebrew 的情况外,默认情况下,可执行文件的文件夹应位于PATH中。 对于 Homebrew,如果要将相关文件夹添加到PATH,请参阅第 1 章,“设置 OpenCV”的“将 Homebrew 与现成的包配合使用(不支持深度相机)”部分的第二步中的说明。 否则,请注意可执行文件的完整路径,因为我们需要在运行它们时使用它。

创建训练集和级联

此后,我们将两个可执行文件称为<opencv_createsamples><opencv_traincascade>。 切记替换适合您的系统和设置的路径和文件名。

这些可执行文件具有某些数据文件作为输入和输出。 以下是生成这些数据文件的典型方法:

  1. 手动创建一个描述负面训练图像集的文本文件。 我们将此文件称为<negative_description>
  2. 手动创建一个描述正面训练图像集的文本文件。 我们将此文件称为<positive_description>
  3. <negative_description><positive_description>作为参数运行<opencv_createsamples>。 该可执行文件将创建一个描述训练数据的二进制文件。 我们将后一个文件称为<binary_description>
  4. <binary_description>作为参数运行<opencv_traincascade>。 该可执行文件创建二进制级联文件,我们将其称为<cascade>

我们可以选择<negative_description><positive_description><binary_description><cascade>的实际名称和路径。

现在,让我们详细了解三个步骤。

创建<negative_description>

<negative_description>是一个文本文件,列出了所有负面训练图像的相对路径。 路径应以换行符分隔。 例如,假设我们具有以下目录结构,其中<negative_description>negative/desc.txt

negative
    desc.txt
    images
        negative 0.png
        negative 1.png

然后,negative/desc.txt的内容可以如下:

"img/negative 0.png"
"img/negative 1.png"

对于少量图像,我们可以手动编写这样的文件。 对于大量图像,我们应该改用命令行来查找与特定模式匹配的相对路径,并将这些匹配项输出到文件中。 继续我们的示例,我们可以通过在 Windows 的“命令提示符”中运行以下命令来生成negative/desc.txt

> cd negative
> forfiles /m images\*.png /c "cmd /c echo @relpath" > desc.txt

请注意,在这种情况下,相对路径的格式为.\images\negative 0.png,这是可以接受的。

另外,在类似 Unix 的外壳中,例如 Mac 或 Ubuntu 上的 Terminal,我们可以运行以下命令:

$ cd negative
$ find img/*.png | sed -e "s/^/\"/g;s/$/\"/g" > desc.txt

创建<positive_description>

如果我们有多个正面训练图像,则需要<positive_description>。 否则,请继续下一节。 <positive_description>是一个文本文件,列出了所有积极训练图像的相对路径。 在每个路径之后,<positive_description>还包含一系列数字,这些数字指示在图像中找到了多少个目标实例,以及哪些子矩形包含了这些目标实例。 对于每个子矩形,数字按以下顺序排列:x,y,宽度和高度。 考虑以下示例:

"img/positive 0.png"  1  120 160 40 40
"img/positive 1.png"  2  200 120 40 60  80 60 20 20

在此,img/positive 0.png在子矩形中包含目标的一个实例,该子矩形的左上角为(120, 160),右下角为(160, 200)。 同时,img/positive 1.png包含目标的两个实例。 一个实例位于子矩形中,该子矩形的左上角为(200, 120),而其右下角为(240, 180)。 另一个实例位于子矩形中,该子矩形的左上角为(80, 60),右下角为(100, 80)

要创建这样的文件,我们可以以与<negative_description>相同的方式开始生成图像路径列表。 然后,我们必须基于对图像的专家(人类)分析,手动添加有关目标实例的数据。

通过运行<opencv_createsamples>创建<binary_description>

假设我们有多个正训练图像,因此,我们创建了<positive_description>,我们现在可以通过运行以下命令来生成<binary_description>

$ <opencv_createsamples> -vec <binary_description> -info <positive_description> -bg <negative_description>

另外,如果我们有一个正面的训练图像(我们将其称为<positive_image>),则应改为运行以下命令:

$ <opencv_createsamples> -vec <binary_description> -image <positive_image> -bg <negative_description>

有关<opencv_createsamples>的其他(可选)标志的信息,请参见这个页面上的官方文档。

通过运行<opencv_traincascade>创建<cascade>

最后,我们可以通过运行以下命令生成<cascade>

$ <opencv_traincascade> -data <cascade> -vec <binary_description> -bg <negative_description>

有关<opencv_traincascade>的其他(可选)标志的信息,请参见这个页面上的官方文档。

提示

发声

为求好运,请在运行<opencv_traincascade>时发出模仿的声音。 例如,说“Moo!” 如果正面训练图像是母牛。

测试和改进<cascade>

<cascade>是与 OpenCV 的CascadeClassifier类的构造器兼容的 XML 文件。 对于如何使用CascadeClassifier的示例,请参考第 4 章“用 Haar 级联跟踪人脸”的FaceTracker实现。通过复制和修改FaceTrackerCameo,您应该能够创建一个简单的测试应用,该应用在自定义目标的跟踪实例周围绘制矩形。

也许在您第一次尝试级联训练时,您将不会获得可靠的跟踪结果。 要提高训练效果,请执行以下操作:

  • 考虑使分类问题更具体。 例如,bald, shaven, male face without glasses级联可能比普通的face级联更容易训练。 稍后,随着结果的改善,您可以尝试再次扩大问题范围。
  • 收集更多的训练图像,更多!
  • 确保<negative_description>包含所有负面训练图像,仅包含负面训练图像。
  • 确保<positive_description>包含所有正面训练图像,仅包含正面训练图像。
  • 确保<positive_description>中指定的子矩形正确。
  • 查看并尝试使用<opencv_createsamples><opencv_traincascade>的可选标志。 这些标志在这个页面的官方文档中进行了描述。

祝你好运,寻找图像!

总结

我们已经讨论了用于生成与 OpenCV 的CascadeClassifier兼容的级联文件的数据和可执行文件。 现在,您可以开始收集您喜欢的事物的图像并为其训练分类器!


我们一直在努力

apachecn/AiLearning

【布客】中文翻译组